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Abstract

The case of a well oriented but randomly positioned
molecule has been treated in a pioneering paper by
Main (1976) [in Crystallographic Computing Tech-
niques, edited by F. R. Ahmed. Copenhagen: Munks-
gaard]. The formula proved quite effective for small
molecules but in its original form is inadequate for
solving the translation problem in molecular replace-
ment techniques applied to proteins. The Main formula
has been suitably modi®ed: applications to test struc-
tures show that the use of direct methods may be a valid
alternative to the widely used translation functions.

1. Symbols and abbreviations

Fh: structure factor of the protein with vectorial index h
�h: phase of Fh

fj�h�: scattering factor of the jth atom
Cs � �Rs;Ts�: sth symmetry operator. Rs is the rota-
tional part, Ts the translational part.
m: order of the point group of the space group
N: number of atoms in the unit cell
Nf : number of molecular fragments (symmetry inde-
pendent) with unknown position and ®xed orientation.
ni: number of atoms in the ith molecular fragment
q: number of atoms (symmetry equivalents included)
whose positions are completely unknownP

q�h� �
Pq

j�1 f 2
j �h�: scattering power of the q atoms

with completely unknown position

P
N�h� �

PN
j�1

f 2
j �h�

P
3q�h1; h2; h3� �

Pq
j�1

fj�h1�fj�h2�fj�h3�

P
3N�h1; h2; h3� �

PN
j�1

fj�h1�fj�h2�fj�h3�

�i �
PN
j�1

Zi
j;

where Zj is the atomic number of the jth atom
"h: Wilson's factor responsible for the enhancement or
depression of the intensity of certain subsets of re¯ec-
tions due to particular symmetry elements
� � �h1

� �h2
� �h3

with h1 � h2 � h3 � 0
Ii�x�: modi®ed Bessel function of order i
Di�x� � Ii�x�=I0�x�.

2. Introduction

Cochran (1955) estimates of triplet invariant phases are
not suf®ciently accurate for macromolecular crystal-
lography. It was argued that the estimates would greatly
improve if some means is found for making use of
available prior information. The knowledge of the
correct orientation of one or more groups of atoms
randomly positioned was exploited by Main (1976) and
reconsidered by Giacovazzo et al. (1988), who obtained
additional probabilistic formulas for polar space groups.
The method has never been systematically applied (at
least to the knowledge of the authors) to macro-
molecules: a recent contribution by Langs et al. (1995)
for a phase-invariant translation function aims at
determining the heavy-atom position for single isomor-
phous replacement data.

The ®rst aim of this paper is to show that a direct-
methods procedure can be designed that preserves its
ef®ciency even when applied to proteins. It might be
worthwhile mentioning that the problem of locating a
well oriented molecule is of primary importance in
molecular replacement techniques (see Rossmann, 1990,
and literature quoted therein). While rotation functions
frequently succeed in ®nding the correct orientation of
the molecule, the translation functions may show many
maxima and the correct translation may not correspond
to the largest one. A thorough review of the literature by
Beurskens et al. (1987) is highly recommended. We want
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to show that a direct procedure based on triplet esti-
mates can be competitive with the most widely used
translation functions.

3. The Main formula

Let us divide the crystal structure into two parts: the ®rst
includes Nf molecular fragments with known orientation
and their symmetry equivalents. The second comprises
the q atoms (symmetry equivalents included) whose
positions are completely unknown. The conditional
probability distribution function of the triplet phase �
was stated in a pioneering paper by Main (1976):

P��� � �2�I0�Q��ÿ1 exp�Q cos��ÿ���;
where

Q � 2jEMh1
EMh2

EMh3
j Q02 �Q002

hjFh1
j2iMhjFh2

j2iMhjFh3
j2iM

" #1=2

;

�1�

Q0 � < PNf

i�1

Pm
s�1

gis�h1�gis�h2�gis�h3� �
P

3q�h1; h2; h3�
( )

;

Q00 � = PNf

i�1

Pm
s�1

gis�h1�gis�h2�gis�h3�
( )

;

gis�h� �
Pni

j�1

fj�h� exp�2�ihCsuj�;

tan � � Q00=Q0;

<f. . .g and =f. . .g stand for the real and imaginary parts
of f. . .g, respectively, uj is the trial position of the jth
atom (belonging to the oriented fragment) and

hjFhj2iM � "h

PNf

i�1

Pm
s�1

jgis�h�j2 �
P

q�h�
( )

�2�

is the expected (on the basis of the prior information)
value of jFhj2. EMh � Fh=hjFhj2i1=2

M is the normalized
structure factor.

4. A tentative procedure

In macromolecular crystallography, the wide use of
molecular replacement methods suggests the following
scenario: a model molecule, similar to that under study,
is oriented by some rotation function. Then the correct
translation is searched for; once this has been found, a
re®nement process starts to modify the electron density
of the translated model molecule into the electron
density of the molecule under study. In this case, the
translation problem has peculiar features: we are dealing
with a model molecule that may be weakly correlated

with the molecule under study and its orientation may
be roughly accomplished. A direct phasing procedure
designed for this type of problem should:

(a) deal with a large number of re¯ections, and
therefore a large number of triplets;

(b) be ef®cient in the calculation of the terms Q0 and
Q00 for numerous triplets;

(c) provide the correct solution to the translation
problem in a reasonable time.

The steps of our trial procedure may be described as
follows:

(i) The observed structure factors jFj of the crystal
structure under study are scaled by a Wilson plot. Let K
and B be the estimated scaling and overall isotropic
thermal factors.

(ii) The structure factors FMh corresponding to the
correctly oriented (but wrongly positioned) model
molecule are calculated:

FMh �
Pni

i�1

Pm
s�1

gis�h�: �3�

In (3), we use the B factor obtained in step (i).
(iii) The scaled jFj are normalized:

EMh � Fh=hjFhj2i1=2
M :

Because of reasons which will be described later, two
types of normalized structure factors will be calculated,
called EM when hjFhj2i is ®xed by equation (2) and EW

when hjFhj2i � "
P

N . In the latter case, the prior
information on the model molecule is overlooked.

(iv) Re¯ections are arranged in decreasing order of
jEj. A relatively small number of re¯ections (say the
NLAR with the largest jEj values) are selected, among
which triplet relations are found.

(v) A random approach is chosen (Baggio et al., 1978)
to which the weighted tangent formula

tan��h� �
P

wk;hÿkQk;hÿk sin��k � �hÿk ��k;hÿk�P
wk;hÿkQk;hÿk cos��k � �hÿk ��k;hÿk�

� Ah

Bh

�4�
is applied. The reliability of the phase estimate is

�h � �A2
h � B2

h�1=2: �5�
The weighting scheme is designed to drive phases
towards values that minimize the difference between �
and h�i (Hull & Irwin, 1978; Altomare et al., 1994).

(vi) The correct solution is chosen among the various
trials by suitable ®gures of merit (see x8) and is used as a
seed for phasing the remaining re¯ections. Batches of
about 200 re¯ections, chosen in decreasing order of jEj,
are progressively phased via a phase-extension proce-
dure from the NLAR re¯ections.

The above procedure is similar to that recently
described in a series of papers integrating direct
methods with isomorphous replacement techniques (see
Giacovazzo et al., 1996, and literature quoted therein).
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The sequence of the various steps agrees with a general
strategy: subdivide the set of re¯ections to phase into
small batches in order to avoid the simultaneous calcu-
lations of several tens of millions of triplets, their
cumbersome management by the tangent formula, and
the need for large storage and computing times.

A further point that deserves to be noticed concerns
the calculation of the Q term in (1). Since triplets
involve both standard and symmetry-equivalent re¯ec-
tions, we have to calculate functions like gis1

�hRs2
� on

varying indices h, s1 and s2. The task may not be trivial
owing to the fact that: (a) for each triple h; s1; s2 the
contribution of a large number of atoms has to be
calculated; (b) the same calculation may be repeated
several times (each h may enter in hundreds and
sometimes in thousands of triplets). The problem may
be simpli®ed if one observes that

gis1
�hRs2
� �Pni

j�1

fj�h� exp 2�ih�Rs2
Rs1

uj � Rs2
Ts1
�: �6�

De®ning the operator Cs3
� �Cs2

Cs1
� �

�Rs2
Rs1
;Rs2

Ts1
� Ts2

�, (6) may be written as

gis1
�hRs2
� � exp�ÿ2�ihTs2

�gis3
�h�: �7�

According to (7), we only need to calculate gis�h�,
s � 1; 2; . . . ;m. In our procedure, they are stored for
the various h involved in the triplet calculations: when
gis1
�hRs2
� is needed, its value may be obtained via the

multiplication table of the symmetry-operator group.
The last remark concerns the role of the termsP

3q�h1; h2; h3� and
P

q�h� in (1) for macromolecular
crystallography.

P
3q represents the Cochran contribu-

tion to the reliability factor of that part of the asym-
metric unit which is completely unknown: if it was non-
negligible, it would drive the triplet phases towards 2�.
Since the model molecule usually represents a large part
of the protein molecule, the value of

P
3q is frequently

negligible with respect to
PNf

i�1

Pm
s�1 gis�h1�gis�h2�gis�h3�.

Therefore, it (as well as
P

q) may be neglected in all our
calculations: accordingly, estimated triplet phases will be
almost uniformly distributed between ÿ� and �.

5. The test structures

We will apply our procedure to four test structures: code
name, space group and other useful data are in Table 1.
Molecular replacement techniques have been an
essential tool for their solution: a model structure was
rotated into the correct position by application of some
rotation functions, then some translation function was
used to correctly locate it. In our tests, the same model
molecule will be used for solving the rotational problem,
but a translation search will be performed by direct
methods. It is very useful to brie¯y characterize the
search model with respect to the test structure.

M-FABP (recombinant human-muscle fatty-acid-
binding protein): P212121, a � 35.400, b � 56.700,
c � 72.700 AÊ . This structure was originally solved using
multiple isomorphous replacement and molecular
replacement procedures (Zanotti et al., 1992). The
model of adipocyte lipid binding protein (A-LBP),
obtained at 2.5 AÊ resolution, was used as search model
for molecular replacement; it shares 64% amino acid
identities with M-FABP. The rotation function in
MERLOT (Fitzgerald, 1988) was used to orient the
molecule using data between 15.0 and 4.0 AÊ resolution
and a translation search was made by X-PLOR
(BruÈ nger, 1990) using 1351 re¯ections between 15 and
4.0 AÊ resolution.

LPH (Lucina pectinata hemoglobin I): P21, a � 37.97,
b � 38.39, c � 42.65 AÊ , � � 97.40�. This structure has
been solved by molecular replacement (Rizzi et al.,
1994) using as search molecule the molecular model of
A. limacina myoglobin, whose amino acid sequence
shares 25% identities with LPH. The program AMoRe
(Navaza, 1994) was used throughout for both rotation-
and translation-function determination using data
between 10.0 and 3.0 AÊ resolution.

STM (sea turtle myoglobin): P212121, a � 37.5,
b � 61.1, c � 75.2 AÊ . The structure determination was
promptly obtained by molecular replacement using the
program AMoRe (Navaza, 1994). Sperm whale
myoglobin was employed as search model, using data
from 15.0 to 4.0 AÊ resolution range for both rotational
and translational searches (Rizzi et al., 1993; Nardini et
al., 1995). Sperm whale myoglobin shares 63% amino
acid identities with STM.

XSD (Xenophous leavis superoxide dismutase):
P212121, a � 73.33, b � 68.86, c � 59.73 AÊ . Cu, Co
bovine SOD has been used as a search model for the
structure determination by means of molecular
replacement. The program AMoRe was employed, using
data between 15.0 and 4.0 AÊ resolution (Djinovic
Carugo et al., 1993). The amino acid sequence homology
between the search model and XSD is �50%.

6. The ®rst applications of the Main formula

Before applying the Main formula to experimental
data, we will brie¯y study its ef®ciency in the ideal
situation characterized by the following protocol
(protocol 1): (a) the structure factors Fh are calculated
from the published crystal structure up to experimental
resolution. In this case, the jEj2M's used in (1) are devoid
of experimental errors; (b) the model molecule coin-
cides with the entire asymmetric unit of the protein test
structure (then Nf � 1). The translation problem was
simulated by rigidly translating all the symmetry-inde-
pendent atoms by � � �0:3a; 0:3b; 0:3c� from their true
positions. Such modi®ed sites constitute the set of
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positional vectors uj by which the gis�h� functions are
calculated. Protocol 1 (i.e. calculated structure-factor
moduli and model molecule coincident with the protein
molecule) generates a nonrealistic and overoptimistic
situation but will enable the reader to evaluate the
potentiality and the limits of the Main formula. For the
sake of brevity, such a formula will be preliminarily
applied to M-FABP and LPH only, which are the most
dif®cult cases to solve. Our ®nal tests will concern all
four test structures.

The re¯ections of M-FABP and LPH were ranked in
decreasing order of jEMj. NLAR � 800 and NLAR �
1000 are the respective number of re¯ections among
which the triplets invariants are found. In Table 2, a
statistical check on the reliability of the Main formula is
shown. Nr is the number of triplets having Q > ARG
and

hj��ji � hj�true ÿ�estji

is the corresponding average of the absolute difference
between the `true' (corresponding to the published test
structure) triplet phase and the triplet phase estimated
via (1). % is the percentage of triplets for which j��j is
smaller than �=2. Table 2 clearly shows that:

(a) the Main formula may overestimate the triplet
reliability;

(b) the number of wrongly estimated triplets is
remarkably large, in spite of the fact that protocol 1
creates the most favourable situation. The above
outcome also suggests that, if a phasing procedure is
applied via the above triplets to M-FABP and LPH data,
the assigned phases should be characterized by large
values of � but the solution of the translational problem
would not be straightforward. That is exactly what we
obtain when we apply the procedure described in x4. In
particular: (i) for M-FABP the true solution is found
with mean phase error equal to 40� (over NLAR � 800
re¯ections) but it is ranked in the fourth position by the
®gures of merit; (ii) for LPH no solution is found. In
both cases, 200 trial solutions were explored.

Let us come to the case in which real experimental
data (up to experimental protein resolution) and real
model molecules in x5 are used (protocol 2). Table 3 is
obtained. Comparison with Table 2 shows that: (a) the
ef®ciency of (1) collapses, which is, according to the
results obtained via protocol 1, mainly due to the lack of
correlation between the model molecule and the test
structure; (b) the overestimation of the triplet reliability
increases and quite large Q values are often associated
with wrong estimates. As a consequence, the correlation
between the accuracy parameter Q and the triplet
reliability tends to vanish. Accordingly, the straightfor-
ward application of the Main formula does not succeed:
no solution is found among the 200 trial solutions.

An additional test was made: in order to increase the
correlation between the model molecule and the struc-
ture under study, only re¯ections up to 4 AÊ resolution
were involved in the calculations. The results can be
summarized as follows: a much larger number of triplets
was found among the 800 largest jEMj re¯ections, the
overestimation of the triplets decreases but again no
solution is found among 200 trial solutions. The above
tests suggest that the application of direct methods for
solving the translation problem at 4 AÊ resolution is
practicable provided some modi®cation to the Main
formula is afforded.

Table 3. Protocol 2: statistical calculations for triplet
invariants estimated via equation (1) for M-FABP and

LPH

NR is the number of triplets having Q > ARG, hj��ji is the average
error, % is the percentage of triplets with j��j<�=2.

M-FABP LPH

ARG NR % hj��ji NR % hj��ji
0.0 24787 50.8 89 13409 50.4 89
0.4 24206 50.7 89 13354 50.4 89
2.0 12362 50.8 88 11949 50.4 89
3.2 4878 52.4 87 10067 50.4 89
4.4 1835 52.2 87 7835 50.5 89
6.5 346 53.5 87 4155 50.7 89

Table 2. Protocol 1: statistical calculations for triplet
invariants estimated via equation (1) for M-FABP and

LPH

NR is the number of triplets having Q > ARG, hj��ji is the average
error, % is the percentage of triplets with j��j<�=2.

M-FABP LPH

ARG NR % hj��ji NR % hj��ji
0.0 19843 83.4 48 8970 71.2 65
0.4 19588 83.7 48 8952 71.2 64
2.0 12537 89.1 40 8554 71.8 64
3.2 5509 91.3 37 7855 72.6 63
4.4 1743 92.1 35 6853 73.3 62
6.5 242 91.3 33 4623 72.5 63

15.0 9 100.0 9 672 67.3 68

Table 1. Code name, space group and crystallochemical
data for test structures

Code name Space group Nref RES (AÊ )

M-FABP�a� P212121 7595 2.14
LPH�b� P21 17352 1.50
STM�c� P212121 9758 1.97
XSD�d� P212121 19056 2.01

References: (a) Zanotti et al. (1992); (b)Rizzi et al. (1994); (c) Nardini
et al. (1995); (d) Djinovic Carugo et al. (1993).
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7. The new procedure

A special test may be applied for judging the ef®ciency
of the Main formula: the correct phase values of the
NLAR re¯ections are submitted to tangent re®nement.
Once convergence has been attained, the ®nal phase
values are expected to present large or small deviations
from the starting values according to whether the
average triplet reliability is high or low. Then the
average phase error hj��ji can be considered as the
best result achievable by application of the tangent
formula via a multisolution procedure. When such a test
has been applied to M-FABP experimental data at
experimental resolution (protocol 2), we obtained
hj��ji � 69�, which con®rms the inef®ciency of our
procedure and of the Main estimates. The new phases
were analysed against �, jEW j and �E � jEW j ÿ jEMj.
We found that:

(a) � and j��j are inversely correlated: e.g.
j��j � 56� for the 159 phases with � > 83, j��j � 59�

for the 374 phases with � > 55. This correlation
(encouraging but not suf®ciently high) is due to the fact
that % is larger than 0.5 for most of the Q values.

(b) jEW j and j��j are inversely correlated: e.g.
j��j � 54� for the 140 re¯ections with jEW j> 2:0,
j��j � 62� for the 412 re¯ections with jEW j> 1:55.

(c) �E and j��j are directly and strongly correlated
(at least for re¯ections with �E> 0). This was rather
unexpected and will have important consequences on
our strategy.

In Table 4, hj��ji is given against �E, for re¯ections
with �E> 0 and �E< 0, respectively. Only 178
re¯ections with �E> 0 are among the NLAR re¯ec-
tions (the NREF re¯ections were ordered according to
decreasing jEMj values). We note that re¯ections with
�E> 0 show deviations from the true values
(hj��ji � 57�) remarkably smaller than re¯ections for
which �E< 0 (hj��ji � 72�). The above results
suggest that it may be better to order the NREF
re¯ections in decreasing order of jEW j and choose the
NLAR re¯ections as those with the largest jEW j values.

The experimental results above described suggest the
following procedure:

(i) A threshold is ®xed for the resolution. It mostly
depends on the similarity between model molecule and
protein. The use of high-resolution data is advisable only
in the case of high similarity.

(ii) Re¯ections are ordered according to �E: e.g. the
®rst in the ordered set is the re¯ection with the largest
positive value of �E, the last in the set is that with the
largest negative value of �E.

(iii) A threshold TR �E is ®xed: re¯ections with
�E> TR �E are selected and, among them, NLAR
re¯ections with jEW j> TR EW are used for the triplet
invariant search. TR �E and TR EW are not critical
values: in our tests, TR �E is usually between 0.0 and 0.4
and TR EW � 0:4. To be more explicit, if TR �E � 0
and TR EW � 0:4, the NLAR re¯ections satisfy the
conditions �E> 0 and EW > 0:4. The threshold values
are chosen so as to select a suf®ciently large number of
re¯ections among which reliable triplets could be found.
The most striking feature of the process is that even
re¯ections with small values of EW are expected to give
rise to reliable triplets provided �E> 0.

(iv) Re¯ections for which jEW j and jEMj are simul-
taneously very weak are selected for the psizero ®gure
of merit (see x8).

(v) The triplets are estimated via the Von Mises
formula

P��� � �2�I0�G��ÿ1 exp�G cos��ÿ���; �8�
where

G � p1G0;

G0 � 2p2jEWh1
EWh2

EWh3
j

� Q02 �Q002

hjFh1
j2iMhjFh2

j2iMhjFh3
j2iM

" #1=2

: �9�

p1 is a weighting factor which limits the range of G to the
interval (0, 6), to avoid triplets with too high values of
the reliability factor G0 dominating the phasing process.
Q0, Q00 and � are de®ned in (1). The reliability coef®-
cient G0 may be obtained from Q by replacingP

N�h1�
P

N�h2�
P

N�h3�
�hjFh1

j2iMhjFh2
j2iMhjFh3

j2iM
� 	1=2

�10�
by a unitary factor. Actually, (10) is often far from unity,
so that (1) and (8) work quite differently. To give a
practical example, let us consider a triplet for which

"
P

N�hi�< hjFhi
j2iM; for i � 1; 2; 3:

Then (10) is smaller than unity: assuming it equal to one
increases the reliability of the triplets for which
jEWij> jEMij. The smaller (10) is with respect to unity,

Table 4. Protocol 2: statistical behaviour of the M-FABP
phases against �E after submission of the true phases to

tangent re®nement

Protocol 3 is used. NR is the number of re¯ections having �E>ARG,
hj��ji is the average error.

�E> 0 �E< 0

ARG NR hj��ji ARG NR hj��ji
0.00 178 57 ÿ2.20 620 72
0.10 139 55 ÿ1.32 603 73
0.15 113 54 ÿ0.88 540 73
0.25 81 53 ÿ0.66 456 71
0.30 68 50 ÿ0.44 324 69
0.55 30 66 ÿ0.20 210 70
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the larger the underestimate of the triplet provided by
(1). On the contrary, if

"
P

N�hi�> hjFhi
j2iM; for i � 1; 2; 3;

assuming (10) equal to unity depresses the reliability of
the triplets for which jEWij< jEMij:

p2 is a weight factor that assumes different values
according to the number of negative �E values. I.e. p2 is
1 if all the three re¯ections contributing to the triplets
have �E> 0 [this is the case of equation (9)]; p2 � 0.8,
0.6 or 0.4 when only one �E, two �E or three �E are
negative.

Equation (8) has no theoretical basis: it has been
suggested by our numerous applications. We will see in
x9 that (8) not only provides better phase estimates but
it also allows ®gures of merit (FOM's) to work ef®-
ciently.

8. The ®gures of merit

Figures of merit are essentially those proposed by
Cascarano et al. (1992) but modi®cations were necessary
to secure their successful use. The MABS ®gure of merit
(Declercq et al., 1979) is not actively used. The ®gure
ALFCOMB, besides the differences (�ÿ h�i), involves
the standard deviation of �, ��. Since the model struc-
ture may be weakly correlated with the protein under
study, the estimated variance may strongly under-
estimate the true variance. In order to take this effect
into account, in our calculations we multiply �2

� by 30.
The traditional psizero ®gure of merit (Cochran &
Douglas, 1957) has been modi®ed by introducing
suitable weights taking into account the prior informa-
tion:

PSI�0� �P
h

wh�
0
h

.P
h

v
1=2
h ;

where

�0h �
����P

j

wjEWkj
EWhÿkj

����;
vh �

P
j

w2
j jEWkj

Ewhÿkj
j2;

wj � �Q02j �Q002j �=hjFkj
j2iMhjFhÿkj

j2iM
n o1=2

;

Q0j � <
PNf

i�1

Pm
s�1

gis�kj�gis�hÿ kj� �
P

2q�kj; hÿ kj�
( )

;

P
2q�kj; hÿ kj� �

Pq
j�1

fj�kj�fj�hÿ kj�;

Q00j � =
PNf

i�1

Pm
s�1

gis�kj�gis�hÿ kj�
( )

:

ALFCOMB and PSI(0) are combined in a suitable
CFOM. We will see in the next section that CFOM is
able to discriminate the correct solution in all the test
cases.

9. Experimental applications

We ®rst apply (8) to control its ef®ciency in ideal
conditions (protocol 1). 800 re¯ections for M-FABP and
1000 re¯ections for LPH are selected according to the
procedure described in x7. The corresponding triplet
statistics are shown in Table 5. We observe: (a) the
NLAR re¯ections selected by the new procedure are
highly connected by the triplet network ± NR values in
Table 5 are double those in Table 2; (b) triplets are
ranked by (8) better than by (1). The improvement is
dramatic for LPH, less evident but non-negligible for
M-FABP. For example, for this last structure, for the
1743 triplets with Q> 4:4 the percentage of the
correctly estimated cosines is 92.1, while for the 2968
triplets with G> 4:4 the percentage is 94.1.

Let us now apply (8) to real data up to experimental
resolution (protocol 2): again NLAR � 800 and 1000 for
M-FABP and LPH, respectively. The triplet statistics are
summarized in Table 6 and may be usefully compared
with results in Table 3. The improvement in terms of the
number of triplets and the mean phase error for
M-FABP is evident and does not deserve further
discussion. Less clear is the improvement for LPH in
terms of mean phase error. We will see below that no
solution is obtained at experimental resolution for such

Table 5. Protocol 1: statistical calculations for triplet
invariants estimated via equation (9) for M-FABP and

LPH (data up to experimental resolution)

M-FABP LPH

ARG NR % hj��ji NR % hj��ji
0.0 43480 77.6 57 19288 96.1 27
0.4 42683 78.0 56 19273 96.2 27
2.0 24281 86.6 45 18745 96.9 26
3.2 9936 92.6 36 17451 97.9 24
4.4 2968 94.1 32 13909 99.1 21
5.5 645 93.2 32 5116 99.7 18

Table 6. Protocol 2: statistical calculations for triplet
invariants estimated via equation (9) for M-FABP and

LPH (data up to experimental resolution)

M-FABP LPH

ARG NR % hj��ji NR % hj��ji
0.0 47078 55.4 84 20125 51.5 88
0.4 44704 55.6 84 20071 51.5 88
2.0 11431 58.8 80 17851 51.9 88
3.2 2321 62.9 75 13243 52.2 88
4.4 343 72.0 67 57321 52.7 87
5.5 19 84.2 64 927 54.3 85
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a structure, while a solution is found if data up to 4 AÊ

resolution are used. For reader usefulness in Table 7, we
show the corresponding triplet statistics.

The procedure described in x8 is applied to the four
test structures. In order to check if the translation
problem was correctly solved, we calculated the corre-
lation factor CORR between the electron density �
calculated from the phases assigned by our direct-
methods procedure and the `true' map �true (corre-
sponding to the published phases):

CORR � h��truei ÿ h�ih�truei
�h�2i ÿ h�i2�1=2�h�2

truei ÿ h�truei2�1=2
:

200 trials per structure are always performed, starting
from random sets of phases. The results may be
summarized as follows:

M-FABP: 3 AÊ resolution data are used: the highest
value of CFOM (� 0.393) recognizes the correct solu-
tion. NLAR � 641 re¯ections are ®rst phased with a
mean phase error of 38�. The phase-expansion process
leads to 7560 phased re¯ections with mean phase error
of 72�. The value of CORR is 0.45. The electron-density
map calculated with all the phased re¯ections is of good
overall quality, allowing straightforward model-building
interpretation throughout the polypeptide chain (see
Fig. 1).

LPH: No solution is found with 3 AÊ resolution data. A
4 AÊ cutoff is then used: the highest value of CFOM
(� 0.558) singles out the correct solution. NLAR � 357
re¯ections are ®rst phased, with a mean error of 49�. The
phase-expansion process leads to a total of 7085 phased

re¯ections with mean phase error of 80�. CORR is equal
to 0.29. Inspection of the electron-density map, calcu-
lated with the 7085 extended phases and observed
structure factors, shows regions that can be easily
interpreted in terms of an atomic model compatible with
the previously determined structure of the protein. In
particular, regions of immediate interpretability are the
�-helical segments surrounding the heme group, which is
well de®ned (see Fig. 2). On the other hand, less clear
electron density is obtained for regions of the protein
structure further away from the heme, for which in the
absence of additional information an atomic model
cannot be ®tted.

STM: 3 AÊ resolution data are used: the highest value
of CFOM (� 0.437) singles out the correct solution.
NLAR � 621 are ®rst phased with a mean phase error
of 20�. The phase-expansion process leads to a total of
9753 re¯ections with a mean phase error of 53�.
CORR � 0.73. The corresponding phases allowed the
calculation of an electron-density map which could be
easily interpreted in terms of the ®nal molecular model
of the protein, the quality of the electron density being
constant throughout the asymmetric unit (see Fig. 3).

XSD: 3 AÊ resolution data are used: the highest value
of CFOM (� 0.290) singles out the correct solution.
NLAR � 680 re¯ections are ®rst phased with mean

Table 7. Protocol 2: statistical calculations for triplet
invariants estimated via equation (9) for LPH (data up to

4 AÊ resolution, NLAR � 396)

LPH

ARG NR % hj��ji
0.0 17747 55.6 83
0.4 13651 56.0 83
2.0 4099 60.2 78
3.2 1319 60.9 77
4.4 346 61.8 77
5.5 53 64.2 73

Fig. 1. M-FABP: a region showing the calculated electron-density map
for three �-strands contoured at the 1.0� level.

Fig. 2. LPH: electron density calculated for the translated molecule
showing the heme group (edge on in the picture) and portions of
two surrounding helices.
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phase error of 27�. The phase-expansion process leads to
a total of 19016 re¯ections with mean phase error of 66�:
CORR � 0.57. Fig. 4 shows a region comprising the
Cu2� and Zn2� ions in the enzyme active site, calculated
with the 19016 phased re¯ections. The dimeric enzyme
model ®ts very nicely the electron density throughout
the asymmetric unit and model building, in the absence
of a molecular model, could have been easily achieved.

10. Final remarks

This paper describes the ®rst successful application of
direct methods to the translation problem in macro-
molecular crystallography. The pioneering contribution
by Main (1976) plays a central role: his formula (1) was
designed to take into account the prior information
available when a model fragment is correctly oriented.
While (1) proved to be a useful tool for the small-
molecule ®eld, some modi®cations were necessary to
improve its ef®ciency for macromolecules. Our experi-
mental tests led us to suggest the new formula (8), which
is more able to overcome the problems usually met in
macromolecular crystallography. It may be worthwhile
observing that (8) [as well as (1)] exploits a type of prior
information that is complementary to that used by most
of the techniques currently used in molecular replace-
ment techniques. For example, several translation
functions are based on Patterson convolutions (Buerger,
1959; Hoppe, 1957; Huber, 1965):

T�t� � R P0�u�Pp�u; t� du;

where P0�u� is the observed Patterson at point u, Pp�u; t�
is the Patterson calculated from all the molecular frag-
ments symmetry related to the model molecule (inter-
and intramolecular vectors included). Better results are
usually obtained when self-Patterson peaks are
subtracted from P0�u� and Pp�u; t�. Then,

T�t� �
Z

P0�u� ÿ
Pm
s�1

Ps�u�
� �

Pp�u; t� ÿPm
s�1

Ps�u�
� �

du;

where Ps�u� is the calculated Patterson function for the
sth fragment symmetry equivalent to the input fragment.
The Fourier transform of T�t� gives the so-called
correlation functions (Rossmann & Blow, 1962; Tollin,
1966; Crowther & Blow, 1967; Beurskens, 1981). If we
compare (1) with T�t�, it becomes clear that: (a) equa-
tion (1) exploits, as prior information, the intramol-
ecular vectors of the model structure only; (b) Patterson
convolution methods are mainly based on inter-
molecular vectors.

The procedure we proposed proved highly ef®cient in
the case of very high sequence homology between the
search model and the unknown protein, providing
electron-density maps which, in the cases of STM (an
�-helical protein) and XSD (an antiparallel �-barrel
structure), can unambiguously be interpreted. On the
other hand, despite the translational search providing
the correct solution, in the case of LPH the electron
density calculated did not allow the complete modelling
of the protein molecule. In all cases, we noticed that for
several residues spurious density, clearly re¯ecting the
model information present in the search molecule
adopted, was visible at the 1.0� contour level. On the
other hand, the calculated electron densities did not
allow the ®tting of molecular models beyond the limits
of the search molecules adopted (i.e. no side-chain
density for trimmed or omitted residues was present or
interpretable). Nevertheless, in all the four cases here
presented, the calculated electron density could locate
properly the unknown molecules, using an approach that

Fig. 3. STM: electron density displaying approximately the same
structural region selected for the homologous LPH protein in Fig. 2.

Fig. 4. XSD: a region of the XSD electron-density map, after proper
translation, comprising the Cu2� and Zn2� ions (shown as isolated
atoms) in the enzyme active site.
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is new in macromolecular crystallography. We are aware
that, with respect to conventional molecular replace-
ment techniques, the new procedure here applied may
be slower, since it does not provide atomic coordinates
for the translated model but only phases for the calcu-
lation of the respective electron-density maps. However,
the method here presented maybe improved in several
aspects:

(a) Via a better use of the vibrational atomic
parameters of the search model. In our procedure, an
overall isotropic thermal factor, equal to that calculated
for the protein by a Wilson plot, is associated with all the
atoms of the model.

(b) Once the protein phases are available, the trans-
lation vector may be straightforwardly found a posteriori
by the fast-Fourier-transform-based algorithm recently
proposed by Lunin & Lunina (1996). Atomic coordi-
nates for the translated model will then be available.

(c) Quartet invariant estimates exploiting intramole-
cular vectors of the model structure might be associated
with triplet invariants in the phasing procedure. A
probabilistic formula so designed is described in the
second paper of this series (Giacovazzo et al., 1997).

(d) A solvent-¯attening procedure may be used to
improve the quality of the phases provided by our
translation procedure [see Giacovazzo & Siliqi (1997)
for an effective solvent-¯attening procedure applied to
direct-methods phases].

All these aspects will be faced in the next paper of this
series.

Part of this work has been supported by the European
Union TMR grant No. CT94-0690 `Advanced Methods
for the Crystallography of Biological Macromolecules'.
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